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The Effect of Measurement Error on the
Dose-Response Curve
by Isao Yoshimura*

In epidemiological studies for an environmental risk assessment, doses are often observed with errors.
However, they have received little attention in data analysis. This paper studies the effect of measurement
errors on the observed dose-response curve. Under the assumptions of the monotone likelihood ratio on
errors and a monotone increasing dose-response curve, it is verified that the slope of the observed dose-
response curve is likely to be gentler than the true one. The observed variance of responses are not so
homogeneous as to be expected under models without errors. The estimation of parameters in a hockey-
stick type dose-response curve with a threshold is considered on line of the maximum likelihood method
for a functional relationship model. Numerical examples adaptable to the data in a 1986 study of the effect
of air pollution that was conducted in Japan are also presented. The proposed model is proved to be suitable
to the data in the example cited in this paper.

Introduction
In order to assess the risk of a chemical substance in

the environment we have to estimate the dose-response
relationship between the dose level of the substance and
the prevalence rate of a set of symptoms that might be
caused by it. The estimation is often performed based
on the data in epidemiological studies.

In epidemiological studies, the raw data are often
highly dispersed, as shown in Figure 1, which is a part
ofthe data published by the Japan Environment Agency
and is interpreted by Yoshimura (2). When a significant
correlation is proved for such data, it is usually arranged
in a reduced form (Fig. 2) by taking averages within
categorized classes that are constructed on the dose.
On such reduced figures we can easily confirm a mon-
otone dose-response relationship.
However, there is one point to be noticed on this line

of data processing. If the true dose-response relation-
ship is similar to the one that is observed in Figure 2,
the dispersion ofraw data must be similar to that shown
in Figure 3. In Figure 3 the middle solid line implies a

dose-response curve, and the upper and the lower lines
imply the widths of the standard deviations multiplied
by 1.5 under the Poisson assumption stated later. The
observed dispersion that is shown as open circles in
Figure 3 is inhomogeneous in contrast with the expected
dispersion shown by curves.

This paper gives a reasonable explanation of this in-
consistency between the data and the fitted model by
introducing a measurement error on doses and studies
about the misleading effect of the measurement errors.

*School of Engineering, Nagoya University, Nagoya 464-01, Japan.
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FIGURE 1. An example of epidemiological data (1). The dose variable
is the NO2 concentration (ppb) in the ambient air, and the response
variable is the prevalence rate (%) of persistent cough among boys
in each area. The number of areas in the study is 68.

Measurement Error Model
Consider that a areas are set in a epidemiological

study and for each areaAi a dose variable and a response
variable are observed. Let the observed variables be
Xi and Yi, i = 1,2... a. Assume that Xi and Yi are
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independently distributed random variables. In real sit-
uations the distributions may be discrete, but, for the
convenience of expression, we regard that they are iden-
tified with probability-densities f(x; (i, a) and g(y; (i,
P), respectively. It does not affect the following argu-
ments.
When the areas are chosen purposively, (i is regarded

as an unknown parameter representing the true dose
on the area Ai. On the contrary, when the areas are
chosen randomly from a population of areas, (i values
are regarded as independently and identically distrib-
uted random variables with a prior probability density
h(k; 0). Assume that the parameters ,B, o-, and 0 are
independent of areas. Let us eliminate the subscript i
in the following, unless the specification of the area is
necessary.
When the true dose e is given, the expectation of Y,

q = E(Y E) = f y g(y; t, I) dy (1)
is regarded as the true mean response on the area. As

'r7
a function of e and I, -n = r(t; ,B) implies the true dose-
response curve. In general, one of the principal pur-

40 poses of such a survey is to know this true dose-response
curve.

FIGURE 2. Observed average responses on categorized doses for data
in Figure 1. The range ofthe estimated common standard deviation
is indicated by vertical bars.
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Effect of the Measurement Error
Functional Relationship Model

In the first case we assume e values are fixed unknown
constants, which implies a functional relationship
model. When we ignore measurement errors on the
dose, we usually evaluate the average of the observed
values of Y for the observed values ofX as an estimate
of the true dose-response curve. An example is shown
in Figure 2. The dose-response curve thus obtained is
regarded as an observation of an weighted average of
E(Yi):

ro(X; , a) = a E(Yi)=f(x; (i, o)
E(=lfY(X; )

-=a 1 E(Yi) * (ti; x, () (2)

where

f(x; ti, or)

Ek=1f(X; tk, 0a)
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FIGURE 3. The dose-response curve estimated on the ignored meas-
urement error. The line in the middle is the fitted dose-response
curve: r(%) = 0.8 + 0.07(t(ppb) - 3.0)+, where (g - a)+ =

max(0, e - a). The modified two lines above and below the middle
line imply the SD range multiplied by 1.5. The open circles are
the observed values.

(3)

This function ro(x; ,3, a-) is called the apparent dose-
response curve. In many cases, conclusions derived
from epidemiological studies are based on the apparent
dose-response curve. However, if measurement errors
exist, the apparent dose-response curve is distorted
from the true one so as to cause a misunderstanding
about the effect of the substance in question, as shown
in the following material.

Consider the following assumptions on the distribu-
tions and parameters:

- Assumption 1: t1 2 %... (a and at least one

inequality is strict.
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MEASUREMENT ERROR ON DOSE RESPONSE

* Assumption 2: the region of x such that fix; t, o) >
0 makes an interval [bl, b2], where b, and b2 are
independent of e and b, < b2.

* Assumption 3: r(Q, 13) is a strictly monotone increas-
ing function of i.

* Assumption 4: The family of densitiesfix; t, o) with
the parameter e has a monotone likelihood ratio in
x that is, for any xl, x2, t', and t2 such that xl <
x and t' < t2,

flX1; t2, o) f(X2; i2, a)
(x1; t1, or) - lX2; i19 a)j

Under these assumptions the following theorem
holds:
Theorem 1. If assumptions 1 through 4 hold, then

ro(x; 13, cr) is a strictly monotone increasing function of
x for b, < x < b2 and constants cl and c2 exist such that
tl < cl - c2 < a and

ro(x; ,r) > r(x; P) for bi < x < cl (5)

ro(x; 3, r) < r(x; 13) for c2 < x < b2. (6)
Proof. By using Eq. (4) in Assumption 4 the following

inequality holds for any xl, x2, j, and tj such that b, <
x1 < x2 < b2 and ( < (j:

frXl; )/ 2k Jtkle (J)
fixi;i, a)O Ek=1 fix; k, u)

fTX2; tj h/uaE,X2;
<

fl2; i2 J) Ika=l f(x2; kk C)U (7)

Thus,
f*(ti; X2, a)
fj(Ni; x1, a)

< fP'(; x2, a)
f* (t.; xl, a) '

This implies that as a family of distributions with pa-
rameter x, ft has a monotone likelihood ratio in E. By
the property of the family with monotone likelihood ra-
tio [for example, see Lehmann (3)], the summation in
Eq. (2) is strictly increasing in x. By Assumption 3, for
any x such that b1 - x < tl,

r(x; P) < rQ1; P)
= li'=l r(t, 13) .J*(i; X, a)

<
la

1 ?tis p) * (t1; X, Oa)

= ro(x; 1, 0).
Likewise, for ta < x < b2

r(x; 13) > ro(x; 3, a) .

(9)

This theorem implies that the apparent response tend
to appear to be greater than the true one in low doses,
while less in high doses. In most actual situations cl =
c2 as shown in the numerical examples in the next sec-
tion, and then the average slope of the apparent dose-
response curve is gentler than the true one in the central
region of observed dose. Hence, it is defective as an
estimate of the true dose-response curve and tends to
cause an incorrect conclusion from the viewpoint of the
risk assessment.
When bothX and Yare normal variables and the dose-

response curve is linear, this fact is well known in the
context of the functional relationship model; however,
in the situation we are faced with in epidemiological
studies, the normality and the linearity are usually vi-
olated. I think this is the reason why this biased prop-
erty contained in the apparent dose-response curve is
neither noticed nor examined.

In the above theorem the strict monotonicity is as-
sumed on the dose-response curve. If there is a thresh-
old below which there is no increase of response, the
monotonicity is not strict. Then Assumption 3 must be
modified as Assumption 3' below:

Assumption 3': r(k; 1B) is constant for e S d and is
a strictly monotone increasing function of e for d -

t, where the constant d is a given constant such that
ti < d < ta.

Even when Assumption 3 is replaced by Assumption 3'
the above proof of the theorem is valid, so that the
following corollary holds:

Corollary. If Assumptions 1, 2, 3', and 4 hold, then
the conclusion of the theorem holds.
This corollary is important in actual situations, be-

cause even when there is a threshold it cannot be ob-
served in data if there are errors in observed dose var-
iables.

Consider next the effect of the errors in the doses on
the variability of the response. The true variance of the
response is reasonably defined as follows:

v(k; 1) = V(Y) = f {y - r(t, 1)}2 - g(y; t, O)dy (11)
In contrast, the apparent variance can be defined as
follows:

v0(X; 1, C) = Ea1 {y - ro(X; 1, u)}2
g9(Y; 13)dy.*(t; x. a)
+Ea V(t; 1) rox; 13,)

+ at= 1 17ti; p) _ ro(X; p, Cr)2

* (Ni; X, a)
(10)

Since both r(x; 13) and ro(x; 13, a) are monotone increas-
ing functions of x, the inequality of Eq. (5) holds for cl
determined as inf(x) such that r(x; 1) - ro(x; 13, a).
Likewise Eq. (6) holds for c2 determined as sup(x) such
that r(x; 13) - ro(x; 1, a).

(12)

If the true variance is constant on the whole range
of the dose, the apparent variance is greater than it by
the second term of Eq. (12). The excess variation in the
apparent variance is in general, remarkable in a central
part of the distribution of e values, as shown in the
numerical example in the next section.
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Structural Relationship Model
In the second model we assume e values are inde-

pendently and identically distributed random variables
with the prior probability density h(Q, 0), which implies
a structural relationship model. In this case, we modify
the apparent dose-response curve as follows:

ro(x; 1, cr, 0) = E(Y IX = x) (13)
= f r(Q, P)g*(; x)dt,

where

9*(t; x) = fix;e, or) * h(t; 0)
=f fix; t', cr) h(Q'; 0)dtl (14)

Assumptions are also modified as follows:
* Assumption 1': There are two constants a1 and a2
such that

a1 <a2, h(t; 0) = 0 for t - a1 or tB a2. (15)
* Assumption 2': The set of x such that fix; i, cr) >
0 makes an interval [b1, b2], where b1 and b2 are
independent of e and b1 < a1 < a2 < b2.

Under these assumptions the following theorem
holds:
Theorem 2. If Assumptions 1', 2', 3, and 4 hold, then

ro(x; 1, a) is a strictly monotone increasing function of
x for b1 < x < b2 and constants c1 and c2 exist such that
tl < c1 2 c2 < a and

ro(x; 13, a) > r(x; 13)
ro(x; 13, u) < r(x; 13)

for b1 < x < cl
for c2 < x < b2.

(16)
(17)

The proof is entirely the same as that of Theorem 1
and hence it is omitted. Likewise, when Assumption 3
is replaced with Assumption 3' the conclusion of the
theorem holds.
As for the variance, the definition is modified as fol-

lows:

vO(x; a, 0) = f f {y ro(X; 1, r, 0)}2

* g(y; t, O) * g*(Q; x) * dy * dt
= f v(, 1) * g*(Q; x)dt + f {r(, 13)

- ro(x; 3, u, 0)}2 g*(t; X) * dt (18)

Numerical Example
In this section, let us show some numerical results

adaptable for the example shown in Figure 1. As for
the dose, let X be such that ln(X) is distributed with
N(ln(Q), cr). As for the response, let Y be such that n
Y is distributed with Poisson (n -q), where n is supposed

to be the number of persons sampled in the area and -

is supposed to be the true prevalence rate in the area
in the case of the example. Though Y is discrete in this
model, it does not violate the validity of the argument
in the preceding section.

Let the true dose-response curve be as follows:

n = r(r; 1) = PO + 13( - 12)+,

where (t - 032)+ = max{O,(t - ,B2)}. This model implies
the hockey-stick regression. In Eq. (19) P3o is, in a sense,
the spontaneous prevalence rate, 1I is the risk factor,
and 12 is the threshold value.
Under the functional relationship model, the likeli-

hood function L can be written as:

a

L = const * Hl e(-njj') (ni lqi)"iYi
i=l

x (2 7r a2Xi2)-12 exp {[ln(xi) - ln(ti)]
(20)

where -i = r(tj; 1) = Po + ,Bi(t - 12)+ . If v is known,
the maximum likelihood estimates can be obtained nu-
merically through an iterative method with suitable in-
itial values of parameters. The estimates adaptable for
the data shown in Figure 1 are obtained for some values
of C as shown in Table 1.

In order to check the adaptability of models, let us
calculate the true and apparent dose-response curves
for the following two cases:

Case 1: = 0.4, P3o = 0.008,
18 ppb, ( = xi.

Case 2: u = 0.4, Bo = 0.008,
18 ppb, n = 300.

The prior distribution is

131 = 0.0023/ppb, 12 =

13 = 0.0023/ppb, 12 =

h(t; 0) = 1/(02 - 01) 01 < e < 02,
where 01 = 5 ppb and 02 = 35 ppb.

(21)

The one of them is a functional relationship model and
the other is a structural relationship model. Both cases
satisfy the assumptions in the corollary or its modified
version.
For Case 1, the apparent dose-response curve can be

obtained easily. For Case 2, some calculations are nec-
essary and the result is as follows:

a) When 01 < 12 < 02,

rO(X; P, g 0) = PO PP2 .+4(U2 u) +)(U3 C)

x4(u2 - a) - 4(u1 - a)

+ 1j* x exp (3Cr2/2) -

(KU2 - 2cr) - (U3 - 2ox)
4(U2 - C) - 4(Ul - (22)

where ul = (InO1 - ln(x))/u, u2 = (1nO2 - ln(x))Iu, U3
= (InP2 - ln(x))r, and

Table 1. Estimates for various values of a.

a o, % 13, %/ppb 12, ppb
0.2 0.9 0.23 19.0
0.3 0.8 0.23 18.0
0.4 0.8 0.23 18.0
0.5 0.8 0.23 16.0

176
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MEASUREMENT ERROR ON DOSE RESPONSE 177

4(u)= J exp{- v2/2}dv

b) When 132 < 01,

rO(X; 13 cr 0) = IO - P1112 + P,i x *exp(3&72/2)
+(X2U- 2or) - 4(ul - 2(r)
4(U2 -() - 4(Ul - Or) (23)

Since the variance is the same as the mean for Poisson
distribution, the true variance is given by

v(e; 13) = {Po + 1PA - 12)+}/n. (24)
In contrast to it, the apparent variance is as follows:
a) When 01 < 12 < 02,

vO(x; 13, or, 0) = ro(x; 13, cr, 0)/n - r2(x; 1, Cr, 0)

+ 10 + (P131 - 21o) 112

(VU2- c) - 4)(U3 - Or)
4(U2 - a) - 1)(Ul - Cr)
+ 2(3o- 13l2)31 xX exp(3cr2/2)

4(u2 - 2cr) - 4(U3 - 2or)
(U2 -cr) - )(Ul - Cr)

+ 1*X exp(4cr2)

(U2- 3cr) - 4(U3 - 3cr)
4(u2 -r) - (ul-j ) (25)

b) When 12 01,
vo(x; 13, cr, 0) = ro(x; 1,B cr, 0)/n - rO(x; 3, Cr, 0)

+ (12 - 13i)1 + 2(o - 132)1

* x * exp(3ur2/2)

4(u2-2cr) - 4(u1 - 2cr) 2
4(u2-cr) -4(Uj - a) Pi

* x exp(4cr2)
4XU2 - 3c) - 4)(u1 - 3cr)
+(U2 - cr) - 4+(Ul - cr) (26)

The result of the numerical calculation for Case 1 is
shown in Figure 4. The result for Case 2 gives entirely
the same figure as Figure 4, and so the figure is omitted.
In the figure the hockey-stick type solid line implies the
true dose-response curve, and the curved solid line im-
plies the apparent dose-response curve calculated for cr
= 0.4 and (i = xi. The two thick lines above and below
the solid lines imply the width of the standard deviation
multiplied by 1.5. Open circles are the observed points
shown in Figure 1.
As far as the data shown in Figure 1 is concerned,

the measurement error models with the parameters set
in Case 1 and Case 2 are well fitted, compared with the
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FIGURE 4. The dose-response curve estimated on a measurement er-
ror model. (a) The true dose-response curve: q(%) = 0.8 +
0.23(t(ppb) - 18.0)+, where (t - a)+ = max(0, e - a). (b) The
apparent dose-response curve calculated for a = 0.4 and t, = xi.
(c,d) The range of the standard deviation multiplied by 1.5. (eJ)
The range of apparent SD multiplied by 1.5. The open circles are
the observed values.

model without measurement error that is shown in Fig-
ure 3.

Conclusion and Discussion
It has been said that it is difficult to fit a simple dose-

response curve to such data as that shown in Figure 1.
However, in this paper the possibility of fitting a simple
dose-response curve to such data is shown by assuming
the existence of a measurement error on the dose. It is
to be noted that if we ignore the measurement error-
in spite of the actual existence of it-we are likely to
estimate the true dose-response curve incorrectly with
a bias.
Further investigations should obtain effective meth-

ods of estimation of parameters well fitted to real data
under the measurement model. However, it is antici-
pated that the knowledge about the dispersion or the
standard deviations is necessary to estimate parame-
ters, because even when the normality of errors and
the linearity of the curve are assumed, the knowledge
about the dispersion inevitably get satisfactory result,
as is noted in Fuller (4) or Singh and Kanji (5).
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